Name: \qquad
Applications - Exponential Formulas:

Growth and Decay: $y=P(1 \pm r)^{t}$

Compounded Interest: $y=P\left(1+\frac{r}{n}\right)^{n t}$

Compounded continuously: $y=P e^{r t}$

Half Life: $y=P\left(\frac{1}{2}\right)^{\frac{t}{h}}$

$$
\begin{aligned}
& t= \\
& h= \\
&
\end{aligned}
$$

\qquad

$$
P=
$$

\qquad
\qquad

$$
\mathrm{n}=
$$

\qquad
\qquad

Examples:

1) A small town has a population of 8,702 in the year 2000 and is growing at a rate of 2.8% per year. What is the expected population in the year 2030?
2.) A population of 1200 deer is dying at a rate of 7% per year. How may deer are expected after 10 years?

How many years until the 100 deer remain?
3.) Suppose I invest $\$ 300$ into an account that earns 2.5% interest compounded every month. How much money will I have after 7 years?
4.) You invest some money into an account that earns 3% compounded continuously. How long will it take you to double your money?
5.) If Anne invests $\$ 600$ into an account that compounds interest quarterly, at what rate doe she need the interest to be if he want to double his investment in 5 years?
6.) Selenium-83 has a half-life of 25 minutes. How many minutes would it take for a 12.5 mg sample to decay and have only 2.25 mg remaining?

